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1 Martingale Concentration Inequalities

1.1 Motivation and overview

Our goal is to get a tail bound for X1 + · · ·+Xn, where the Xi are independent. Here is
our solution so far:

(a) Chernoff inequality bounded by MGF.

(b) Bound MGF using sub-Gaussian and sub-exponential properties.

(c) Many commonly used random variables are sub-Gaussian or sub-exponential.

What about more complicated structure?

1. Sometimes, we want to show concentration of Sn = f(X1, . . . , Xn) =: f(X1:n).

2. Sometimes, we want to show concentration of Sn =
∑T

t=1Xt, where {Xt}t≥1 is cor-
related. We can deal with this if it is a Martingale difference sequence.

This lecture, we will take the approach of a Martingale concentration inequaltiy. We
will use Markov’s inequality on eλSn along with a conditional MGF bound and optimizing
over λ. We will see

(a) Doob’s Martingale representation

(b) Azuma-Hoeffding, Azuma- Bernstein, and bounded difference inequalities

(c) Applications

(d) Variants: Freedman’s inequality and Doob’s maximal inequality
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Example 1.1. SupposeX1, . . . , Xn
iid∼ PX ∈ P([a, b]). We want to estimate θ = E

X,X′
iid∼PX

[g(X,X ′)],

where we assume that g : R2 → R is symmetric (such as g(x, x′) = |x − x′| or g(x, x′) =
1
2(x− x′)2. In the latter case, θ = Var(X).

Hoeffding introduced U-statistics for estimating these parameters θ:

U(X1:n) =
1(
n
2

) ∑
1≤i<j≤n

g(Xi, Xj).

If we let

P̂X,X′ =
1(
n
2

) ∑
1≤i<j≤n

δ(Xi,Xj)

be the empirical distribution, then U(X1:n) = Ê(X,X′)[g(X,X ′)]. The U statistic is an
unbiased estimator of θ because

E[U(X1:n)] = E[g(Xi, Xj)] = θ.

This has the smallest variance among all unbiased estimators.
Today, we will show the concentration bound

P(|U − θ| ≥ t) ≤ 2 exp

(
− nt2

2‖g‖∞

)
.

This is significant because U is not a sum of independent random variables, so our previous
technology does not work here.

1.2 Doob’s martingale representation of f(X1, . . . , Xn)

Now return to the setting where we are dealing with f(X1, . . . , Xn), where the Xi are
independent. Define

Yk = E[f(X1:n) | X1:k] k ≥ 0.

We can think of conditioning on X1:k as conditioning on the σ-algebra Fk = σ(X1:k)

Example 1.2. Here is the example to keep in mind: Let f(X1:n) = X1 + · · · + Xn with
independent Xi. Then

Yk = X1 + · · ·+Xk + E[Xk+1] + · · ·+ E[Xn].

Further define the difference
Dk = Yk − Yk−1.

In the previous example, Dk = Xk − E[Xk]. We can in general write

f(X)− E[f(X)] = Yn − Y0 =

n∑
k=1

(Yk − Yk−1) =

n∑
k=1

Dk.
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We call {Yk} a martingale sequence and {Dk} a martingale difference sequence.
Let us recall what a martingale is.

Definition 1.1. A filtration is an increasing nested sequence of σ-algebras

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · .

Often, we take Fk = σ(X1:k). If the filtration is not defined properly, the result you
get may not be true.

Definition 1.2. If we have {Yk}∞k=1, where Yk is Fk-measurable, then we way that {Yk}
is {Fk}-adapted.

Definition 1.3. {(Yk,Fk)}k≥1 is a martingale sequence if

1. {Yk} is adapted to {Fk}.

2. E[|Yk|] <∞,

3. E[Yk | Fk−1] = Yk−1.

Martingales are often used to model gambling problems where your strategy can depend
on the outcomes of the past. If you don’t have a martingale, you can sometimes subtract
the mean to get one.

Definition 1.4. {Dk}k≥1 is a martingale difference sequence if {
∑n

k=1Dk}n≥1 is a
martingale with respect to {Fk}k≥1.

Example 1.3. Let {Xi}i≥1
iid∼ PX , where E[|X|] < ∞. Denote µ = EX [X] and Sk =∑k

s=1Xs. Then {(Xk − kµ, σ(X1:k))}k≥1 is a martingale.

Proof. We only need to check the third property:

E[Sk − kµ | X1:k−1] = Sk−1 − (k − 1)µ

= Yk−1.

Example 1.4 (Doob’s martingale). Let {Xi}i≥1 be independent1 and E[|f(X1, . . . , Xn)|] <
∞. Then {(Yk = E[f(X1:n) | X1:k], σ(X1:k))}k≥1 is a martingale sequence.

Proof. Again, we only check the third property:

E[Yk+1 | σ(X1:k)] = E[E[f(X1:n) | X1:n+1]X1:k]

= E[f(X1:n) | X1:k]

= Yk

The second equality is by the tower property of conditional expectation.
1In class, we had this assumption, but I don’t think it is actually needed.
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1.3 Martingale concentration

Most inequalities for an iid sum have a martingale version. Here is a martingale version of
Bernstein’s inequality.2

Theorem 1.1. Let {(Dk,Fk)} be a martingale difference sequence. If

E[eλDk | Fk−1] ≤ eλ2ν2k/2 a.s. ∀λ ≤ 1

αk
,

then

1.
∑n

k=1Dk is sE(
√∑n

k=1 ν+k2,maxk≤n αk).

2.

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
t2

2
∑n

k=1 ν
2
k

,
t

2α∗

})
This condition is that a random variable given by the MGF is bounded. We will see

later how to check this condition.

Proof. We can start with the Chernoff bound

P

(
n∑
k=1

Dk

)
≥ t ≤ inf

λ

E[eλ
∑n

k=1Dk ]

eλt
.

Then we can bound the moment generating function by using the tower property of con-
ditional expectation

E[eλ
∑n

k=1Dk ] = E[eλ
∑n−1

k=1 Dk E[eλDn | Fn−1]

Using λ ≤ 1
αn

,

≤ E[eλ
∑n−1

k=1 Dkeλ
2ν2k/2]

= E[eλ
∑n−1

k=1 Dk ]eλ
2ν2k/2

Iterating this argument, we get

≤ eλ2(
∑n

k=1 ν
2
k)/2

for all λ ≤ 1
maxk≤n αk

.

Remark 1.1. In this theorem, the νk are deterministic. In the case where the νk are
Fk−1-measurable, we will get a related but different bound.

Here is a corollary which is sometimes easier to use than the previous theorem.

2This inequality does not have a formal name, but you may call it an Azuma-Bernstein inequality.
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Corollary 1.1 (Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale difference
sequence. Suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s., where bk, ak are
Fk−1-measurable and |bk − ak| ≤ Lk. Then

1.
∑n

k=1Dk is sG(
√∑n

k=1 L
2
k/2).

2.

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

Proof. We have E[eλDk | Fk−1] ≤ eλ2(bk−ak)2/8. Use the same proof as before.

Now specialize to Doob’s martingale

Dk = E[f(X1:n) | X1:k]− E[f(X1:n) | X1:k−1].

Definition 1.5. f(x1, . . . , xn) is a bounded difference function if for all k ∈ [n], x1:n, x
′
k,

|f(x1:k−1, xk, xk+1:n)− f(x1:k−1, x
′
k, xk+1:n)| ≤ Lk.

This is a condition on how much the function changes if we change 1 coordinate. Here
is a corollary of the Azuma-Hoeffding inequality

Corollary 1.2. Suppose that f : Rn → R is L1:n bounded and X1:n has independent
components. Then for all t ≥ 0,

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

Proof. This is Azuma-Hoeffding with
∑n

k=1Dk = f(X1:n) − E[f(X1:n)]. Here, there exist
Ak ≤ Dk ≤ Bk, where |Bk −Ak| ≤ Lk because we can let

Bk = sup
x

E[f(X1:n) | X1:k−1, Xk = x]− E[f(X1:n) | X1:k−1],

Ak = inf
x
E[f(X1:n) | X1:k−1, Xk = x]− E[f(X1:n) | X1:k−1].

1.4 Applications

Example 1.5 (U -statistics). Here is how we can get a cncentration inequality for U -
statistics: Recall that

U(X1:n) =
1(
n
2

) ∑
1≤i<j≤n

|Xi −Xj |, Xi ∼ PX ∈ P([−b, b]).
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Then

|U(X1:k−1, Xk, Xk+1:n)− U(X1:k−1, X
′
k, Xk+1:n) =

1(
n
2

)
∣∣∣∣∣∣
∑
s 6=k
|Xs −Xk| − |Xs −X ′k|

∣∣∣∣∣∣
≤ 1(

n
2

)∑
s 6=k
|Xk −X ′k|

≤ 2

n(n− 1)
· (n− 1) · 2b

≤ 4b

n
.

So U is (4b
n ,

4b
n , . . . ,

4b
n )-bounded difference. This gives the tail bound

P(|U(X1:n)− θ| ≥ t) ≤ 2 exp

(
2t2

n 16
n2

)
= 2 exp

(
−nt

2

16

)
.

That is,

|U(X1:n − θ| . b

√
log(2/δ)

n
with probability 1− δ.

Example 1.6 (Supremum of empirical process). Suppose we have samples (Zi)i∈[n]
iid∼ PZ ,

where Zi = (Xi, Yi). We can define the loss function ` : Z×Θ→ [0, 1] and the empirical
risk

R̂n(θ) =
1

n

n∑
k=1

`(Zi; θ).

Correspondingly, we have the population risk

R(θ) = E[R̂n | θ] = E[`(Z; θ)]

In statistical learning theory, we are often concerned with the excess risk

E [Z1:n] := sup
θ∈Θ

R(θ − R̂n(θ).

We can use an empirical risk minimizer θ̂n, and we want to upper bound R(θ̂n) ≤
R̂n(θ̂n) + E(Z1:n).
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We claim that E(Z1:n) is (1/n, . . . , 1/n)-bounded difference. Then

|E(Z1:n)− E[E(Z1:n)]| ≤
√

log(2/δ)

2n
with probability 1− δ.

Proof. Fix Z1:n, and let θ∗ = arg maxθ∈Θ(R(θ)− R̂n(θ)). Then E(Z1:n) = R(θ∗)− R̂n(θ∗).
We want to look at

|E(Z1:n)− E(Z1:k−1, Z
′
k, Zk+1:n)| = 1

n

n∑
i=1

(`(Zi; θ∗)− E[`(Zi; θ∗)])

− sup
θ∈Θ

1

n

∑
i 6=k

(`(Zi; θ)− E[`(Zi; θ))

− 1

n
(`(Z ′k; θ)− E[`(Z ′k; θ)])

≤ 1

n

n∑
i=1

(`(Zi; θ∗)− E[`(Zi; θ∗)])

− 1

n

∑
i 6=k

(`(Zi; θ∗)− E[`(Zi; θ∗))

− 1

n
(`(Z ′k; θ∗)− E[`(Z ′k; θ∗)])

=
1

n
(`(Zk; θ∗)− `(Z ′k; θ∗))

≤ 1

n
.

Remark 1.2. This doesn’t say anything about

E
[
sup
θ
R̂n(θ)−R(θ)

]
.

1.5 Freedman’s inequality

Our “Azuma-Bernstein” inequality says that if E[eλDk | Fk−1] ≤ eλ2ν2k/2, then∣∣∣∣∣ 1n
n∑
k=1

Dk

∣∣∣∣∣ ≤ max


√

2
n

∑n
k=1 ν

2
k

n
log

(
2

δ

)
,
2α∗ log

(
2
δ

)
n

 with probability 1− δ.

However, sometimes ν2
k is not deterministic and instead is Fk−1 measurable.

Theorem 1.2 (Freedman’s inequality). Let {(Dk,Fk)} be a martingale difference sequence
such that
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1. E[Dk | Fk=1] = 0.

2. Dk ≤ b a.s.

Then for all λ ∈ (0, 1/b) and δ ∈ (0, 1),

P

(
T∑
t=1

Xt ≤ λ
T∑
t=1

E[D2
k | Fk−1] +

log(1/δ)

λ

)
≥ 1− δ.

This is useful in bandit and reinforcement learning research.3

1.6 Maximal Azuma-Hoeffding inequality

Recall Doob’s maximal inequality for sub-martingales.

Lemma 1.1 (Doob’s maximal inequality). If {Xs}s≥0 is a sub-martingale, i.e.

Xs ≤ E[Xt | Fs] ∀s < t,

then for all u > 0,

P

(
sup

0≤t≤T
Xt ≥ u

)
≤ E[max{XT , 0}]

u
.

This gives rise to a maximal version of the Azuma-Hoeffding inequality:

Theorem 1.3 (Maximal Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale
difference sequence, and suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s.
Then

P

(
sup

0≤k≤n

k∑
s=1

Dk ≥ t

)
≤ exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

3For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.
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