Statistics 210B Lecture 5 Notes

Daniel Raban

February 1, 2022

1 Martingale Concentration Inequalities

1.1 Motivation and overview

Our goal is to get a tail bound for $X_{1}+\cdots+X_{n}$, where the X_{i} are independent. Here is our solution so far:
(a) Chernoff inequality bounded by MGF.
(b) Bound MGF using sub-Gaussian and sub-exponential properties.
(c) Many commonly used random variables are sub-Gaussian or sub-exponential.

What about more complicated structure?

1. Sometimes, we want to show concentration of $S_{n}=f\left(X_{1}, \ldots, X_{n}\right)=: f\left(X_{1: n}\right)$.
2. Sometimes, we want to show concentration of $S_{n}=\sum_{t=1}^{T} X_{t}$, where $\left\{X_{t}\right\}_{t \geq 1}$ is correlated. We can deal with this if it is a Martingale difference sequence.

This lecture, we will take the approach of a Martingale concentration inequaltiy. We will use Markov's inequality on $e^{\lambda S_{n}}$ along with a conditional MGF bound and optimizing over λ. We will see
(a) Doob's Martingale representation
(b) Azuma-Hoeffding, Azuma- Bernstein, and bounded difference inequalities
(c) Applications
(d) Variants: Freedman's inequality and Doob's maximal inequality

Example 1.1. Suppose $X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} P_{X} \in \mathcal{P}([a, b])$. We want to estimate $\theta=\mathbb{E}_{X, X^{\prime}, \text { id }}^{\sim} P_{X}\left[g\left(X, X^{\prime}\right)\right]$, where we assume that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is symmetric (such as $g\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|$ or $g\left(x, x^{\prime}\right)=$ $\frac{1}{2}\left(x-x^{\prime}\right)^{2}$. In the latter case, $\theta=\operatorname{Var}(X)$.

Hoeffding introduced U-statistics for estimating these parameters θ :

$$
U\left(X_{1: n}\right)=\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} g\left(X_{i}, X_{j}\right) .
$$

If we let

$$
\widehat{\mathbb{P}}_{X, X^{\prime}}=\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} \delta_{\left(X_{i}, X_{j}\right)}
$$

be the empirical distribution, then $U\left(X_{1: n}\right)=\widehat{E}_{\left(X, X^{\prime}\right)}\left[g\left(X, X^{\prime}\right)\right]$. The U statistic is an unbiased estimator of θ because

$$
\mathbb{E}\left[U\left(X_{1: n}\right)\right]=\mathbb{E}\left[g\left(X_{i}, X_{j}\right)\right]=\theta
$$

This has the smallest variance among all unbiased estimators.
Today, we will show the concentration bound

$$
\mathbb{P}(|U-\theta| \geq t) \leq 2 \exp \left(-\frac{n t^{2}}{2\|g\|_{\infty}}\right)
$$

This is significant because U is not a sum of independent random variables, so our previous technology does not work here.

1.2 Doob's martingale representation of $f\left(X_{1}, \ldots, X_{n}\right)$

Now return to the setting where we are dealing with $f\left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} are independent. Define

$$
Y_{k}=\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k}\right] \quad k \geq 0
$$

We can think of conditioning on $X_{1: k}$ as conditioning on the σ-algebra $\mathcal{F}_{k}=\sigma\left(X_{1: k}\right)$
Example 1.2. Here is the example to keep in mind: Let $f\left(X_{1: n}\right)=X_{1}+\cdots+X_{n}$ with independent X_{i}. Then

$$
Y_{k}=X_{1}+\cdots+X_{k}+\mathbb{E}\left[X_{k+1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

Further define the difference

$$
D_{k}=Y_{k}-Y_{k-1}
$$

In the previous example, $D_{k}=X_{k}-\mathbb{E}\left[X_{k}\right]$. We can in general write

$$
f(X)-\mathbb{E}[f(X)]=Y_{n}-Y_{0}=\sum_{k=1}^{n}\left(Y_{k}-Y_{k-1}\right)=\sum_{k=1}^{n} D_{k} .
$$

We call $\left\{Y_{k}\right\}$ a martingale sequence and $\left\{D_{k}\right\}$ a martingale difference sequence.
Let us recall what a martingale is.
Definition 1.1. A filtration is an increasing nested sequence of σ-algebras

$$
\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \cdots \subseteq \mathcal{F}_{n} \subseteq \cdots
$$

Often, we take $\mathcal{F}_{k}=\sigma\left(X_{1: k}\right)$. If the filtration is not defined properly, the result you get may not be true.

Definition 1.2. If we have $\left\{Y_{k}\right\}_{k=1}^{\infty}$, where Y_{k} is \mathcal{F}_{k}-measurable, then we way that $\left\{Y_{k}\right\}$ is $\left\{\mathcal{F}_{k}\right\}$-adapted.

Definition 1.3. $\left\{\left(Y_{k}, \mathcal{F}_{k}\right)\right\}_{k \geq 1}$ is a martingale sequence if

1. $\left\{Y_{k}\right\}$ is adapted to $\left\{\mathcal{F}_{k}\right\}$.
2. $\mathbb{E}\left[\left|Y_{k}\right|\right]<\infty$,
3. $\mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]=Y_{k-1}$.

Martingales are often used to model gambling problems where your strategy can depend on the outcomes of the past. If you don't have a martingale, you can sometimes subtract the mean to get one.
Definition 1.4. $\left\{D_{k}\right\}_{k \geq 1}$ is a martingale difference sequence if $\left\{\sum_{k=1}^{n} D_{k}\right\}_{n \geq 1}$ is a martingale with respect to $\left\{\mathcal{F}_{k}\right\}_{k \geq 1}$.

Example 1.3. Let $\left\{X_{i}\right\}_{i \geq 1} \stackrel{\text { iid }}{\sim} P_{X}$, where $\mathbb{E}[|X|]<\infty$. Denote $\mu=\mathbb{E}_{X}[X]$ and $S_{k}=$ $\sum_{s=1}^{k} X_{s}$. Then $\left\{\left(X_{k}-k \mu, \sigma\left(X_{1: k}\right)\right)\right\}_{k \geq 1}$ is a martingale.

Proof. We only need to check the third property:

$$
\begin{aligned}
\mathbb{E}\left[S_{k}-k \mu \mid X_{1: k-1}\right] & =S_{k-1}-(k-1) \mu \\
& =Y_{k-1} .
\end{aligned}
$$

Example 1.4 (Doob's martingale). Let $\left\{X_{i}\right\}_{i \geq 1}$ be independent ${ }^{1}$ and $\mathbb{E}\left[\left|f\left(X_{1}, \ldots, X_{n}\right)\right|\right]<$ ∞. Then $\left\{\left(Y_{k}=\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k}\right], \sigma\left(X_{1: k}\right)\right)\right\}_{k \geq 1}$ is a martingale sequence.

Proof. Again, we only check the third property:

$$
\begin{aligned}
\mathbb{E}\left[Y_{k+1} \mid \sigma\left(X_{1: k}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: n+1}\right] X_{1: k}\right] \\
& =\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k}\right] \\
& =Y_{k}
\end{aligned}
$$

The second equality is by the tower property of conditional expectation.

[^0]
1.3 Martingale concentration

Most inequalities for an iid sum have a martingale version. Here is a martingale version of Bernstein's inequality. ${ }^{2}$

Theorem 1.1. Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}$ be a martingale difference sequence. If

$$
\mathbb{E}\left[e^{\lambda D_{k}} \mid \mathcal{F}_{k-1}\right] \leq e^{\lambda^{2} \nu_{k}^{2} / 2} \quad \text { a.s. } \forall \lambda \leq \frac{1}{\alpha_{k}}
$$

then

1. $\sum_{k=1}^{n} D_{k}$ is $\operatorname{sE}\left(\sqrt{\sum_{k=1}^{n} \nu_{+} k^{2}}, \max _{k \leq n} \alpha_{k}\right)$.
2.

$$
\mathbb{P}\left(\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right) \leq 2 \exp \left(-\min \left\{\frac{t^{2}}{2 \sum_{k=1}^{n} \nu_{k}^{2}}, \frac{t}{2 \alpha_{*}}\right\}\right)
$$

This condition is that a random variable given by the MGF is bounded. We will see later how to check this condition.

Proof. We can start with the Chernoff bound

$$
\mathbb{P}\left(\sum_{k=1}^{n} D_{k}\right) \geq t \leq \inf _{\lambda} \frac{\mathbb{E}\left[e^{\left.\lambda \sum_{k=1}^{n} D_{k}\right]}\right.}{e^{\lambda t}}
$$

Then we can bound the moment generating function by using the tower property of conditional expectation

$$
\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_{k}}\right]=\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_{k}} \mathbb{E}\left[e^{\lambda D_{n}} \mid \mathcal{F}_{n-1}\right]\right.
$$

Using $\lambda \leq \frac{1}{\alpha_{n}}$,

$$
\begin{aligned}
& \leq \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_{k}} e^{\lambda^{2} \nu_{k}^{2} / 2}\right] \\
& =\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_{k}}\right] e^{\lambda^{2} \nu_{k}^{2} / 2}
\end{aligned}
$$

Iterating this argument, we get

$$
\leq e^{\lambda^{2}\left(\sum_{k=1}^{n} \nu_{k}^{2}\right) / 2}
$$

for all $\lambda \leq \frac{1}{\max _{k \leq n} \alpha_{k}}$.
Remark 1.1. In this theorem, the ν_{k} are deterministic. In the case where the ν_{k} are \mathcal{F}_{k-1}-measurable, we will get a related but different bound.

Here is a corollary which is sometimes easier to use than the previous theorem.

[^1]Corollary 1.1 (Azuma-Hoeffding inequality). Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}$ be a martingale difference sequence. Suppose there exists $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ such that $D_{k} \in\left(a_{k}, b_{k}\right)$ a.s., where b_{k}, a_{k} are \mathcal{F}_{k-1}-measurable and $\left|b_{k}-a_{k}\right| \leq L_{k}$. Then

1. $\sum_{k=1}^{n} D_{k}$ is $\mathrm{sG}\left(\sqrt{\sum_{k=1}^{n} L_{k}^{2}} / 2\right)$.
2.

$$
\mathbb{P}\left(\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right) .
$$

Proof. We have $\mathbb{E}\left[e^{\lambda D_{k}} \mid \mathcal{F}_{k-1}\right] \leq e^{\lambda^{2}\left(b_{k}-a_{k}\right)^{2} / 8}$. Use the same proof as before.
Now specialize to Doob's martingale

$$
D_{k}=\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k}\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k-1}\right] .
$$

Definition 1.5. $f\left(x_{1}, \ldots, x_{n}\right)$ is a bounded difference function if for all $k \in[n], x_{1: n}, x_{k}^{\prime}$,

$$
\left|f\left(x_{1: k-1}, x_{k}, x_{k+1: n}\right)-f\left(x_{1: k-1}, x_{k}^{\prime}, x_{k+1: n}\right)\right| \leq L_{k} .
$$

This is a condition on how much the function changes if we change 1 coordinate. Here is a corollary of the Azuma-Hoeffding inequality

Corollary 1.2. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is $L_{1: n}$ bounded and $X_{1: n}$ has independent components. Then for all $t \geq 0$,

$$
\mathbb{P}\left(\left|f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{k=1}^{n} L_{k}^{2}}\right)
$$

Proof. This is Azuma-Hoeffding with $\sum_{k=1}^{n} D_{k}=f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]$. Here, there exist $A_{k} \leq D_{k} \leq B_{k}$, where $\left|B_{k}-A_{k}\right| \leq L_{k}$ because we can let

$$
\begin{aligned}
B_{k} & =\sup _{x} \mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k-1}, X_{k}=x\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k-1}\right], \\
A_{k} & =\inf _{x} \mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k-1}, X_{k}=x\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid X_{1: k-1}\right] .
\end{aligned}
$$

1.4 Applications

Example 1.5 (U-statistics). Here is how we can get a cncentration inequality for U statistics: Recall that

$$
U\left(X_{1: n}\right)=\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right|, \quad X_{i} \sim P_{X} \in \mathcal{P}([-b, b]) .
$$

Then

$$
\begin{aligned}
\mid U\left(X_{1: k-1}, X_{k}, X_{k+1: n}\right)-U\left(X_{1: k-1}, X_{k}^{\prime}, X_{k+1: n}\right) & =\frac{1}{\binom{n}{2}}\left|\sum_{s \neq k}\right| X_{s}-X_{k}\left|-\left|X_{s}-X_{k}^{\prime}\right|\right| \\
& \leq \frac{1}{\binom{n}{2}} \sum_{s \neq k}\left|X_{k}-X_{k}^{\prime}\right| \\
& \leq \frac{2}{n(n-1)} \cdot(n-1) \cdot 2 b \\
& \leq \frac{4 b}{n}
\end{aligned}
$$

So U is $\left(\frac{4 b}{n}, \frac{4 b}{n}, \ldots, \frac{4 b}{n}\right)$-bounded difference. This gives the tail bound

$$
\mathbb{P}\left(\left|U\left(X_{1: n}\right)-\theta\right| \geq t\right) \leq 2 \exp \left(\frac{2 t^{2}}{n \frac{16}{n^{2}}}\right)=2 \exp \left(-\frac{n t^{2}}{16}\right)
$$

That is,

$$
\left\lvert\, U\left(X_{1: n}-\theta \left\lvert\, \lesssim b \sqrt{\frac{\log (2 / \delta)}{n}} \quad\right. \text { with probability } 1-\delta\right.\right.
$$

Example 1.6 (Supremum of empirical process). Suppose we have samples $\left(Z_{i}\right)_{i \in[n]} \stackrel{\text { iid }}{\sim} P_{Z}$, where $Z_{i}=\left(X_{i}, Y_{i}\right)$. We can define the loss function $\ell: Z \times \Theta \rightarrow[0,1]$ and the empirical risk

$$
\widehat{R}_{n}(\theta)=\frac{1}{n} \sum_{k=1}^{n} \ell\left(Z_{i} ; \theta\right) .
$$

Correspondingly, we have the population risk

$$
R(\theta)=\mathbb{E}\left[\widehat{R}_{n} \mid \theta\right]=\mathbb{E}[\ell(Z ; \theta)]
$$

In statistical learning theory, we are often concerned with the excess risk

$$
\mathcal{E}\left[Z_{1: n}\right]:=\sup _{\theta \in \Theta} R\left(\theta-\widehat{R}_{n}(\theta) .\right.
$$

We can use an empirical risk minimizer $\widehat{\theta}_{n}$, and we want to upper bound $R\left(\widehat{\theta}_{n}\right) \leq$ $\widehat{R}_{n}\left(\widehat{\theta}_{n}\right)+\mathcal{E}\left(Z_{1: n}\right)$.

We claim that $\mathcal{E}\left(Z_{1: n}\right)$ is $(1 / n, \ldots, 1 / n)$-bounded difference. Then

$$
\left|\mathcal{E}\left(Z_{1: n}\right)-\mathbb{E}\left[\mathcal{E}\left(Z_{1: n}\right)\right]\right| \leq \sqrt{\frac{\log (2 / \delta)}{2 n}} \quad \text { with probability } 1-\delta .
$$

Proof. Fix $Z_{1: n}$, and let $\theta_{*}=\arg \max _{\theta \in \Theta}\left(R(\theta)-\widehat{R}_{n}(\theta)\right)$. Then $\mathcal{E}\left(Z_{1: n}\right)=R\left(\theta_{*}\right)-\widehat{R}_{n}\left(\theta_{*}\right)$. We want to look at

$$
\begin{aligned}
&\left|\mathcal{E}\left(Z_{1: n}\right)-\mathcal{E}\left(Z_{1: k-1}, Z_{k}^{\prime}, Z_{k+1: n}\right)\right|= \frac{1}{n} \sum_{i=1}^{n}(\\
&\left.\left(Z_{i} ; \theta_{*}\right)-\mathbb{E}\left[\ell\left(Z_{i} ; \theta_{*}\right)\right]\right) \\
& \quad-\sup _{\theta \in \Theta} \frac{1}{n} \sum_{i \neq k}\left(\ell\left(Z_{i} ; \theta\right)-\mathbb{E}\left[\ell\left(Z_{i} ; \theta\right)\right)\right. \\
& \quad-\frac{1}{n}\left(\ell\left(Z_{k}^{\prime} ; \theta\right)-\mathbb{E}\left[\ell\left(Z_{k}^{\prime} ; \theta\right)\right]\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(Z_{i} ; \theta_{*}\right)-\mathbb{E}\left[\ell\left(Z_{i} ; \theta_{*}\right)\right]\right) \\
& \quad-\frac{1}{n} \sum_{i \neq k}\left(\ell\left(Z_{i} ; \theta_{*}\right)-\mathbb{E}\left[\ell\left(Z_{i} ; \theta_{*}\right)\right)\right. \\
& \quad-\frac{1}{n}\left(\ell\left(Z_{k}^{\prime} ; \theta_{*}\right)-\mathbb{E}\left[\ell\left(Z_{k}^{\prime} ; \theta_{*}\right)\right]\right) \\
&=\frac{1}{n}\left(\ell\left(Z_{k} ; \theta_{*}\right)-\ell\left(Z_{k}^{\prime} ; \theta_{*}\right)\right) \\
& \leq \frac{1}{n} .
\end{aligned}
$$

Remark 1.2. This doesn't say anything about

$$
\mathbb{E}\left[\sup _{\theta} \widehat{R}_{n}(\theta)-R(\theta)\right] .
$$

1.5 Freedman's inequality

Our "Azuma-Bernstein" inequality says that if $\mathbb{E}\left[e^{\lambda D_{k}} \mid \mathcal{F}_{k-1}\right] \leq e^{\lambda^{2} \nu_{k}^{2} / 2}$, then

$$
\left|\frac{1}{n} \sum_{k=1}^{n} D_{k}\right| \leq \max \left\{\sqrt{\frac{\frac{2}{n} \sum_{k=1}^{n} \nu_{k}^{2}}{n} \log \left(\frac{2}{\delta}\right)}, \frac{2 \alpha_{*} \log \left(\frac{2}{\delta}\right)}{n}\right\} \quad \text { with probability } 1-\delta .
$$

However, sometimes ν_{k}^{2} is not deterministic and instead is \mathcal{F}_{k-1} measurable.
Theorem 1.2 (Freedman's inequality). Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}$ be a martingale difference sequence such that

1. $\mathbb{E}\left[D_{k} \mid \mathcal{F}_{k=1}\right]=0$.
2. $D_{k} \leq b$ a.s.

Then for all $\lambda \in(0,1 / b)$ and $\delta \in(0,1)$,

$$
\mathbb{P}\left(\sum_{t=1}^{T} X_{t} \leq \lambda \sum_{t=1}^{T} \mathbb{E}\left[D_{k}^{2} \mid \mathcal{F}_{k-1}\right]+\frac{\log (1 / \delta)}{\lambda}\right) \geq 1-\delta
$$

This is useful in bandit and reinforcement learning research. ${ }^{3}$

1.6 Maximal Azuma-Hoeffding inequality

Recall Doob's maximal inequality for sub-martingales.
Lemma 1.1 (Doob's maximal inequality). If $\left\{X_{s}\right\}_{s \geq 0}$ is a sub-martingale, i.e.

$$
X_{s} \leq \mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right] \quad \forall s<t
$$

then for all $u>0$,

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T} X_{t} \geq u\right) \leq \frac{\mathbb{E}\left[\max \left\{X_{T}, 0\right\}\right]}{u}
$$

This gives rise to a maximal version of the Azuma-Hoeffding inequality:
Theorem 1.3 (Maximal Azuma-Hoeffding inequality). Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}$ be a martingale difference sequence, and suppose there exists $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ such that $D_{k} \in\left(a_{k}, b_{k}\right)$ a.s. Then

$$
\mathbb{P}\left(\sup _{0 \leq k \leq n} \sum_{s=1}^{k} D_{k} \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}}\right) .
$$

[^2]
[^0]: ${ }^{1}$ In class, we had this assumption, but I don't think it is actually needed.

[^1]: ${ }^{2}$ This inequality does not have a formal name, but you may call it an Azuma-Bernstein inequality.

[^2]: ${ }^{3}$ For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.

